
Chris J. Newburn, Gaurav Bansal, Michael Wood, Luis Crivelli, Judit Planas, Alejandro Duran

Paulo Souza, Leonardo Borges, Piotr Luszczek, Stanimire Tomov, Jack Dongarra, Hartwig Anzt,

Mark Gates, Azzam Haidar, Yulu Jia, Khairul Kabir, Ichitaro Yamazaki, Jesus Labarta

Monday May 23, 2016

IPDPS/AsHES, Chicago

Heterogeneous StreamingIPDPS/AsHES’16

What do programmers want for a heterogeneous environment?

 Separation of concerns suitable for long life time
 Application developer does not have to become a computer scientist or technologist

 Tuner has freedom to adapt to new platforms, with easy-to-use building blocks

 Sequential semantics tractable, debuggable

 Task concurrency among and within computing elements

 Pipeline parallelism hide communication latency

 Unified interface to heterogeneous platforms ease of retargetability

2

hStreams delivers these features

Heterogeneous StreamingIPDPS/AsHES’16

What is hStreams?

 Library with a C ABI fit customer deployment needs
 Opened sourced: 01.org/hetero-streams, also lotsofcores.com/hstreams

 Streaming abstraction

 FIFO semantics, out of order execution

 Streams are bound to resources; compute, data transfer and sync actions occur in that context

 Memory buffer abstraction

 Unified address space

 Tuner can manage instances independently, e.g. in each card or node

 Buffers can have properties, like memory kind

 Easy retargeting to different platforms

 Dependences among actions

 Inferred from order in which library calls are made

 Managed at the buffer granularity

 Easy on ramp, pay as you go scheme

3

Heterogeneous StreamingIPDPS/AsHES’16

Current deployments with hStreams

 Production

 Simulia Abaqus Standard, v2016.1

 Siemens PLM NX Nastran, v11

 MSC Nastran, v2016

 Academic and pre-production

 Petrobras HLIB – Oil and gas, 3D stencil

 OmpSs from Barcelona Supercomputing Center

 …more on the way

4

Heterogeneous StreamingIPDPS/AsHES’16

API layering

 Application frameworks can be layered on top of hStreams

 hStreams adds streaming, memory management on top of offload plumbing

 Possible targets include localhost, PCI devices, nodes over fabric, FPGA,s SoCs

5

Heterogeneous StreamingIPDPS/AsHES’16

hStreams Hello World

// Main header for app API (source)

#include <hStreams_app_api.h>

int main() {

uint64_t arg = 3735928559;

// Create domains and streams

hStreams_app_init(1,1);

// Enqueue a computation in stream 0

hStreams_app_invoke(0, "hello_world",

1, 0, &arg, NULL, NULL, 0);

// Finalize the library. Implicitly

// waits for the completion of

// enqueued actions

hStreams_app_fini();

return 0;

}

// Main header for sink API

#include <hStreams_sink.h>

// for printf()

#include <stdio.h>

// Ensure proper name mangling and symbol

// visibility of the user function to be

// invoked on the sink.

HSTREAMS_EXPORT

void hello_world(uint64_t arg)

{

// This printf will be visible

// on the host. arg will have

// the value assigned on the source

printf("Hello world, %x\n", arg);

}

source sink

6

1 other node,

1 stream

In stream 0,

1 argument

Heterogeneous StreamingIPDPS/AsHES’16

void tiled_cholesky(double **A)

{

int k, m, n;

for (k = 0; k < T, k++) {

A[k][k] = DPOTRF(A[k][k]);

for (m = k+1; m < T; m++) {

A[m][k] = DTRSM(A[k][k], A[m][k]);

}

for (n = k+1; n < T; n++) {

A[n][n] = DSYRK(A[n][k], A[n][n]);

for (m = n+1; m < T; m++) {

A[m][n] = DGEMM(A[m][k], A[n][k], A[m][n]);

}

}

}

}
It looks like there’s opportunity for concurrency

But do you want to create an explicit task graph for each of these?

Consider a Cholesky factorization, e.g. for Simulia Abaqus

7

Heterogeneous StreamingIPDPS/AsHES’16

So what’s a good abstraction? How about streams?

 A sequence of library calls induces a set of dependences among tasks

 The dependence graph is never materialized

 A tuner or runtime can bind and reorder tasks for concurrent execution and pipelining

8

 Manual (now): individual streams – bound to subsets of threads
 Tuner does the compute binding, data movement, synchronization

 MetaQ (future version) – spans all resources
 Pluggable runtime does compute binding, data movement, synchronization

Actions Streams Nodes

P
O

T
R

F

T
R

S
M

T
R

S
M

T
R

S
M

T
R

S
M

POTRF

Types of actions:

Compute

Data xfer

Sync

Tuner does binding,

adds data mov’t, sync

Initially, this is all manual

The MetaQ automates this

G
E

M
M

P
O

T
R

F

T
R

S
M

S
Y

R
K

T
R

S
M ……

G
E

M
M

Heterogeneous StreamingIPDPS/AsHES’16

2

1

3

4

Sequence of user-defined tasks
Input and output

operands

21

3
4

Stream 0 Stream 1

Ordering

Distribution

Association

Induced

dependences

Set of buffers with properties

Sync action inserted

Induces dependences only on “red”

Non-dependent tasks could pass

FIFO semantic, OOO execution

R
e
s
p

o
n

s
ib

il
it

y

T
u

n
e

r

A

p
p

 d
e
v

e
lo

p
e
r

9

Heterogeneous StreamingIPDPS/AsHES’16

Favorable competitive comparison

 Similar approaches

 CUDA Streams

 OpenCL (OCL)

 OmpSs

 OpenMP offload

 Also at Intel

 Compiler Offload Streams

 LIBXSTREAM

 Fewer lines of extra code

 2x CUDA Streams, 1.65x OCL

 Fewer unique APIs

 2.25x CUDA Streams, 2x OCL

 Fewer API calls

 1.9x CUDA Streams, 1.75x OCL

10

Heterogeneous StreamingIPDPS/AsHES’16

Tiling and scheduling

 Matrices are tiled

 Work for each tile bound to stream

 Streams bound to a subset of
resources on a given host or MIC

 hStreams manages the
dependences, remote invocation,
data transfer implementation, sync

11

Tiling and binding for matrix multiply

Tiling and binding for Cholesky

Heterogeneous StreamingIPDPS/AsHES’16

Benefits of synchronization in streams

 Synchronization outside of streams – OmpSs on CUDA Streams

 OmpSs checks if cross-streams dependences satisfied

 Host works around blocking by doing more work

 Synchronization inside streams – OmpSs on hStreams

 Cross-stream sync action enqueued within stream

 Performance impact

 For a 4Kx4K matrix multiply, the host was the bottleneck

 Avoiding the checks for cross-stream dependences yielded a 1.45x perf improvement

12

Stream 0

Stream 1

Stream 0

Stream 1

Heterogeneous StreamingIPDPS/AsHES’16

Tiled Cholesky – MAGMA, MKL AO

HSW:
2 cards + host vs. host only: 2.7x
1 card + host vs. host only: 1.8x

Compared favorably with
MKL automatic offload, MAGMA

after only 4 days’ effort

MAGMA* uses host only for panel on diagonal,

hStreams balances load to host more fully

hStreams optimizes offload more aggressively

MAGMA tunes block size and algo for smoothness

hStreams is jagged since block size is less tuned

System info:

Host: E5-2697v3 (Haswell) @ 2.6GHz, 2 sockets

64GB 1600 MHz; SATA HD;

Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390;

uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first runMAGMA MIC 1.4..0 data measured by Piotr Luszczek of U Tenn at Knoxville

Optimization notice *Trademarks may be claimed as the property of others
13

Heterogeneous StreamingIPDPS/AsHES’16

Tiled matrix multiply – impact of load balancing

HSW:
2 cards + host vs. host only: 2.89x
1 card + host vs. host only: 1.80x

IVB:
2 cards + host vs. host only: 3.95x
1 card + host vs. host only: 2.45x

Good scaling across host, cards

Load balancing (LB) matters more for

asymmetric perf capabilities (IVB vs. KNC)

System info:

Host: E5-2697v3 (Haswell) @ 2.6GHz, v2 (Ivy Bridge) @ 2.7GHz,

Both 2 sockets, 64GB 1600 MHz; SATA HD;

Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390;

uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Optimization notice
14

Heterogeneous StreamingIPDPS/AsHES’16

Simulia Abaqus Standard*

 Offload to two cards, from IVB or
more-capable 28-core HSW

 Showing modest gains from
using 2 cards in addition to host
on more-capable HSW

 Up to 2x at app level on less-
capable 24-core IVB

System info:

Host: E5-2697v3 (Haswell) @ 2.6GHz, v2 (Ivy Bridge) @ 2.7GHz,

Both 2 sockets, 64GB 1600 MHz; SATA HD; Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Simula Abaqus Standard preproduction v2016

results measured by Michael Wood of Simulia

There are no guarantees that the formal release will

have the same performance or functionality

Optimization notice *Trademarks may be claimed as the property of others
15

Heterogeneous StreamingIPDPS/AsHES’16

Conclusion: results delivered by hStreams

 Support for heterogeneity

 Offload to multiple cards, localhost

 Portability, retargetability

 Effective layering above and below hStreams

 Ease of use

 ~2x fewer lines of code, fewer API calls, fewer unique APIs, less variable allocation

 1.4x lower overheads for cross-stream coordination

 Ease of design exploration: target affinity, degree of tiling, number of streams

 Ease of porting and future proofing through separation of concerns

 Performance

 Outperformed MAGMA and MKL Automatic Offload by 10%

 Perfect scaling using MPI and multiple cards on Petrobras

 Boosted Petrobras HLIB by 10% by overlapping communication with computation

 2+x of just host by adding 2 cards

16

Heterogeneous StreamingIPDPS/AsHES’16

Related work

 Offload libraries: CUDA Streams, OpenCL

 Explicit event creation, can only wait on 1 event at a time

 Fewer unique APIs, fewer extra lines of code

 Also: Qualcomm MARE, StarPU, TBB Flow Graph

 OmpSs

 Uses dynamic scheduling, data movement, sync on top of hStreams or CUDA Streams

 Offload to 1 card only; does not target localhost

 Source-source compiler

 Compiler based

 Intel Offload Streams: offload only; does not target localhost

 OpenMP 4.x

• Task scheduling within a single domain, offload to other domains

• Does not support stream abstraction, dependences enforced only at the same nesting level

 Does not depend on C++

 SyCL, Phalanx, CnC, UPC++, CHARM++, TBB FG, Kokkos, Legion, Chapel

17

Heterogeneous StreamingIPDPS/AsHES’16

What would you like to ask or discuss?

18

Heterogeneous StreamingIPDPS/AsHES’16

hStreams vs. CUDA Streams performance

 Setup: factorize a supernode with a Simulia standalone harness

 Compare offload to K40x and KNC, with the same host (IVB)

 Upper bound: (total solver time) – (on-card time) to factor out HW diffs

 Measurement methodology may under-count K40x non-kernel time

 Normalized: (ratio of solver time)(ratio of native kernel time)

 Lower hStreams overheads balance higher KNC card-side times

 hStreams shows lower overhead than CUDA Streams

19

S4b S8 “A”

CUDA Streams non-kernel 9.8s 7.6s 3.1s

hStreams non-kernel 5.2s 4.4s 2.7s

hStreams advantage
vs. CUDA Streams, upper bound

1.89x 1.71x 1.12x

hStreams advantage
vs. CUDA Streams, normalized

1.28x 1.24x 1.03x

Actual hStreams

advantage

in between these

Heterogeneous StreamingIPDPS/AsHES’16

Petrobras application

 Oil and gas application, performs reverse time migration

 A high-level Fortran90 library called HLIB abstracts CUDA, OpenCL and CPU

 hStreams support was added by Paulo Souza of Petrobras

20

Heterogeneous StreamingIPDPS/AsHES’16

Petrobras* HLIB (Heterogeneous library)

 Petrobras’s current code
executes one task at a time,
across a whole card, and
doesn’t yet use host

 1.10x benefit from using
asynchronous pipelining for
optimized (shorter) code,
1.07x for unoptimized

 Benefit (not shown) from 1
MIC is 1.5x, 4 MICs is 6.0x

 Submitted to IPDPS15
System info:

Host: E5-2697v3 (Haswell) @ 2.6GHz, 2 sockets

64GB 1600 MHz; SATA HD; Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Petrobras data from preproduction HLIB code

measured by Paulo Souza of Perobras

There are no guarantees that the formal release will

have the same performance or functionality

Optimization notice *Trademarks may be claimed as the property of others

Heterogeneous StreamingIPDPS/AsHES’16

Configurations

22

Specification
Intel Xeon Processor
E5-2697v2 (IVB) and

E5-2697v3 (HSW)

Intel Xeon Phi Coprocessor
C0-7120A (KNC)

NVidia K40x

Skt,Core/Skt,Thr/Core 2S,12C(v2),14C(v3),2T 1S, 61C, 4T 1S, 15C, 256T

SP, DP width, FMA {8,4,N (v2) 8,4,Y (v3)} 16,8,Y 192, 64, Y

Clock (GHz) 2.7(v2) 2.6(v3) 1.33 (turbo) 0.875 (turbo)

RAM (GB) 64 DDR3-1.6GHz 16 GDDR5 12 GDDR5

L1 data, instr (KB) 32,32 32,32 64

L2 Cache (KB) 256 512 roughly 200

L3 Cache (KB) 32K(v2),35K(v3) (sh) - -

OS, Compiler {RHEL 6.4, Intel 16.0} {Linux, Intel 16.0} -

Middleware MPSS 3.6 MPSS 3.6 CUDA 7.5

Heterogeneous StreamingIPDPS/AsHES’16

Simulia harness standalone performance

 Setup: factorize a supernode with a Simulia standalone harness

 Standalone data not available for K40x; Intel had only a MIC version

 HSW is a bit faster than KNC; IVB is much slower

23

KNC offload HSW host as target IVB host as target

2.35s 2.24s 4.27s

4 60-thread streams 3 9-thread streams 3 7-thread streams

